forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 2598
Articles: 1'959'068
Articles rated: 2571

30 May 2020
  » arxiv » nlin.AO/0202038

  Article overview

On model selection and the disability of neural networks to decompose tasks
Marc Toussaint ;
Date 19 Feb 2002
Journal Proceedings of the International Joint Conference on Neural Networks (IJCNN 2002), 245-250.
Subject Adaptation and Self-Organizing Systems; Neural and Evolutionary Computing; Disordered Systems and Neural Networks | nlin.AO cond-mat.dis-nn cs.NE
AbstractA neural network with fixed topology can be regarded as a parametrization of functions, which decides on the correlations between functional variations when parameters are adapted. We propose an analysis, based on a differential geometry point of view, that allows to calculate these correlations. In practise, this describes how one response is unlearned while another is trained. Concerning conventional feed-forward neural networks we find that they generically introduce strong correlations, are predisposed to forgetting, and inappropriate for task decomposition. Perspectives to solve these problems are discussed.
Source arXiv, nlin.AO/0202038
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2020 - Scimetrica