| | |
| | |
Stat |
Members: 3666 Articles: 2'599'751 Articles rated: 2609
05 February 2025 |
|
| | | |
|
Article overview
| |
|
Unmasking electronic energy transfer of conjugated polymers by suppression of O(2) quenching | J Yu
; D Hu
; P F Barbara
; | Date: |
25 Aug 2000 | Journal: | Science, 289 (5483), 1327-30 | Abstract: | The photochemistry of poly[2-methoxy, 5-(2’-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) has been found to be highly dependent on the presence of O(2), which increases singlet exciton quenching dramatically. Spectroscopy on isolated single molecules of MEH-PPV in polycarbonate films that exclude O(2) reveals two distinct polymer conformations with fluorescence maxima near 555 and 580 nanometers wavelength, respectively. Time-resolved single-molecule data demonstrate that the 580-nanometer conformation exhibits a "landscape" for intramolecular electronic energy relaxation with a "funnel" that contains a 580-nanometer singlet exciton trap at the bottom. The exciton traps can be converted to exciton quenchers by reaction with O(2). Conformationally induced, directed-energy transfer is arguably a critical dynamical process that is responsible for many of the distinctive photophysical properties of conjugated polymers. | Source: | PubMed, pmid10958774 doi: 8775 | Services: | Forum | Review | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|